Lipopolysaccharide pretreatment inhibits LPS-induced human umbilical cord mesenchymal stem cell apoptosis via upregulating the expression of cellular FLICE-inhibitory protein
نویسندگان
چکیده
Mesenchymal stem cell (MSC)-based regenerative therapy is currently regarded as a novel approach with which to repair damaged tissues. However, the efficiency of MSC transplantation is limited due to the low survival rate of engrafted MSCs. Lipopolysaccharide (LPS) production is increased in numerous diseases and serves an essential function in the regulation of apoptosis in a variety of cell types. Previous studies have indicated that low-dose LPS pretreatment contributes to cytoprotection. In the current study, LPS was demonstrated to induce apoptosis in human umbilical cord mesenchymal stem cells (hUCMSCs) via the activation of caspase, in a dose-dependent manner. Low-dose LPS pretreatment may protect hUCMSCs against apoptosis induced by high-dose LPS, by upregulating the expression of cellular FADD-like IL-1β-converting enzyme-inhibitory protein (c-FLIP). The results of the present study indicate that pretreatment with an appropriate concentration of LPS may alleviate high-dose LPS-induced apoptosis.
منابع مشابه
A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells
Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...
متن کاملEupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملExtracellular Vesicles Derived from Human Umbilical Cord Perivascular Cells Improve Functional Recovery in Brain Ischemic Rat via the Inhibition of Apoptosis
Background: Ischemic stroke, as a health problem caused by the reduced blood supply to the brain, can lead to the neuronal death. The number of reliable therapies for stroke is limited. Mesenchymal stem cells (MSCs) exhibit therapeutic achievement. A major limitation of MSC application in cell therapy is the short survival span. MSCs affect target tissues through the secretion of many paracrine...
متن کامل3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression
New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...
متن کاملShiga-like toxin inhibition of FLICE-like inhibitory protein expression sensitizes endothelial cells to bacterial lipopolysaccharide-induced apoptosis.
Shiga-like toxin (SLT) has been implicated in the pathogenesis of hemolytic uremic syndrome and its attendant endothelial cell (EC) injury. Key serotypes of Escherichia coli produce SLT-1 in addition to another highly pro-inflammatory molecule, lipopolysaccharide (LPS). It has previously been established that SLT-1 induces EC apoptosis and that LPS enhances this effect. LPS alone has no affect ...
متن کامل